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Abstract. We show that the problem of minimizing a concave quadratic function with one concave 
direction is NP-hard. This result can be interpreted as an attempt to understand exactly what makes 
nonconvex quadratic programming problems hard. Sahni in 1974 [8] showed that quadratic program- 
ming with a negative definite quadratic term (n negative eigenvalues) is NP-hard, whereas Kozlov, 
Tarasov and Hacijan [2] showed in 1979 that the ellipsoid algorithm solves the convex quadratic 
problem (no negative eigenvalues) in polynomial time. This report shows that even one negative 
eigenvalue makes the problem NP-hard. 
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1. Introduction 

Nonlinear optimization includes many subclasses of problems. Up to date, the 
best methods seem naturally to exist for convex programming problems; see, for 
example [2]. Nonconvex minimization problems do not appear to admit efficient 
algorithms. The problem of designing algorithms that find global solutions is very 
difficult, since in general, there are no local criteria in deciding whether a local 
optimum is global [5], [6]. 

In this paper we consider the complexity of a class of nonconvex quadratic 
problems. The general concave quadratic problem has the following form: 

min j(x) = i xTQx + cTx 

s.t. AxGb, 

where c, x E lRE, A is an wz X n matrix, b E Rm, and Q is an n X n symmetric 
negative semidefinite matrix. It is well known that this problem is NP-hard [8]. In 
fact, many well known combinatorial optimization problems (e.g. linear O-l 
programming) can be formulated as global concave minimization problems [6]. 
The simplest case of concave programming is when the corresponding symmetric 

* This author’s work supported by the Applied Mathematical Sciences Program (KC-04-02) of the 
Office of Energy Research of the U.S. Department of Energy under grant DE-FGO2-86ER25013.AOOO 
and in part by the National Science Foundation, the Air Force Office of Scientific Research, and the 
Office of Naval Research, through NSF grant DMS 8920550. 

Journal of Global Optimization 1: 15-22, 1991 
0 1991 Kluwer Academic Publishers. Printed in the Netherlands. 



16 PANOS M. PARDALOS AND STEPHEN A. VAVASIS 

matrix Q is of rank one, with exactly one negative eigenvalue. We call this 
problem QPlNE. 

In this paper we prove that QPlNE is also NP-hard (because of [9], this implies 
that this problem is NP-complete). Related complexity results on nonconvex 
quadratic programming can be found in [l], [3], and [7]. Although complexity 
results of this nature characterize worst case instances, they nevertheless are 
indicative of the computational difficulty of the problem. In addition, these results 
enhance our understanding of what makes nonconvex problems so difficult to 
solve. 

2. Main Construction 

In this section and the next section we construct the quadratic programming 
problem that is NP-hard. We will transform the clique problem to QPlNE. The 
actual instance of clique to be transformed will be introduced in next section; in 
this section we set up the framework for the quadratic program. 

The objective function of the quadratic program will involve two variables, w 
and z. The actual objective function is: 

minimize 2 - i4~’ . (21 

Notice that this objective function is a quadratic function with one negative 
eigenvalue. 

In addition to w and z there will be two sequences of variables, x,, . . . , X~ and 

Yl,27 . * . T Yn-l,n. We have a variable yjj for all pairs of indices (i, j) such that 
1 s i < j G n; this implies that there are (n - l)~z/2 such variables. Thus, our 
instance of quadratic programming has a total of a + 2 + (n - l)n/2 variables. 

The first sequence of constraints is 

These constraints specify an n-cube; if (x1, . . . , x~) is a vertex of the cube, i.e., 
.X~ E {O, 1} for each i, then we call (x1, . . . , x~) a bimry point. 

Next, we let b > 1 be a constant to be specified below (it will turn out that b = 4 
is acceptable). Variable w in the objective function is constrained by a linear 
equation: 

w = bxl + b2x2 + . . . + bnxn . (41 

Next, we want to define a sequence of constraints so that z = w2 at all binary 
feasible points. In this regard, notice that 

w2 = b2x; + b4x; +. . . + b2nx; + 2 2bi+jxixj . 
l-Si<i<n 
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We cannot include this constraint in our problem since it is nonlinear. Instead, we 
include a sequence of linear constraints to mimic this constraint at binary points. 
In particular, notice that at a binary point xi = xf . We introduce the variables yij 
for 1 s i <j < n constrained by 

and 

yij so (6) 

yjj 2= xi + xj - 1 . m 

Notice that the minimum value for yij at a binary point is exactly xixj under these 
two constraints. Moreover, these constraints are linear. 

Now, finally we introduce the linear equation constraint on z to mimic the 
formula (5) for J: 

z = bzxl + b2q +. . . + b2nxn + 2 2b’+jyij . (81 
lSi<]Srl 

For the remainder of this section we consider the quadratic program with 
objective function (2) and linear constraints (3), (4), (6), (7), and (8). In the next 
section we introduce additional constraints on the X~‘S based on the instance of 
clique, but for now we establish properties of the problem as its stands. The 
properties are established via lemmas; the main property is Theorem 1, which 
states that a feasible point is optimal if and only if it is a binary feasible point. 

We start with a general remark that the objective function z - KJ’ depends 
linearly on each yij, and this dependence involves a positive coefficient. There- 
fore, if we are given some setting of the xi’s and we are trying to minimize z - w2, 
then we ought to choose the minimum setting for each yij feasible with the given 
setting of the x~‘s. 

In other words, if (.x1, . . . , x~) are fixed, there is a unique setting for the 
remaining variables in order to achieve the lowest objective function value. In 
particular, set yLj = max(xj + xj - 1,O) and set in, z according to (4) and (8). 
Thus, we will often specify a feasible point by providing only the values of 
variables x1, . . . , x~. 

LEMMA 1. For a binary feasible point, the objective function is zero (provided 
the remaining variables are chosen optimally). 

Proof. This is true by construction. 0 

In the next lemma we characterize possible minima of the objective function. The 
main theorem afterwards sharpens this result. 

LEMMA 2. The minimum value of the objective function can be achieved only at 
a point such that xi E {O, ll2,1} for each i. 

Proof. Let (2, f, r+, 2) be a feasible point, possibly a candidate for optimum. 
Without loss of generality, we can assume that the fij values are at their minimum 
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possible feasible values. Suppose for some i* that .CiS @ {O, l/2, l}. Implicit in the 
upcoming paragraphs is a proof that the point (S,?, G, 2) cannot be an extreme 
point of the polytope, and we will argue that this implies suboptimality. 

Let 

Also, let 
J={i:Zi=l--ii,}. 

Note that J might be empty. Note also that since & # l/2, 1 fl J = fl. 
Now, consider the point (x(l), y(l), n(t), z(l)) p arametrized by l as follows. For 

i E Z, xj(t) = ij + r. For i E J, xi(l) = ii - t. For i q! Z U .T, xi(t) = ii. For all (i, j) 
such that fij = ii + ii - 1 ( jij is either equal to this quantity or to zero), we let 
yij(t) = xj(t) + xj(t) - 1. For the other (i, j), let yij(t) = 0. Finally, we let n(t) and 
z(t) vary linearly with x(f), y(t) so that (4) and (8) are satisfied, i.e., 

w(t) = bq(t) + * . . + VkJt) 

and similarly for z(t). 
Notice by construction that (x(O), y(O), w(O), z(0)) = (2, 9, G, 2). We claim 

that there exists an E > 0 such that (x(t), y(t), w(t), z(t)) is feasible for all 
t E (-e, E). Notice that the constraints 0 s xj s 1 are satisfied for l small enough 
since the xi’s that vary with t lie strictly between 0 and 1. 

Next we check the constraints on the yijs. There are three cases. The first case 
is that & + ij - 1 < 0 in which case yjj = 0 and yij(t) = 0, so yjj(t) is greater than 
q(t) + xj(t) - 1 for t close enough to zero. 

The second case is that ii + ij - 1 > 0, in which case yij > 0. Moreover, in this 
case, yZj(r) = x:(t) + xj(t) - 1, and the constraint yij(t) 3 0 is satisfied for r close 
enough to zero. 

The last case is that ii + ij - 1 = 0. In this case yij(t) = x((t) + xj(t) - 1. NOW, 
there are two subcases; in the first subcase {i, j} tl(1 U J) = 0. In this case yjj(t) 
does not vary with t and hence remains feasible. In the second subcase, say i E Z, 
we know that ij = 1 - ii (by the hypothesis for this case). This means that j E .7 by 
definition of J. Thus, xj(t) = ij - t and xj(t) = ii + t, so the t’s cancel in the 
expression for y jj (t) . 

Finally, the constraints for w and z are satisfied by definition of w(t), z(t). 
Thus, we have constructed a feasible line segment containing (?,f, &, 2) in its 

interior. We claim that w(t) depends in nontrivial way on t. Note that w(t) takes 
the form 

w(t) = G + t * 2 qbi 
i=l 

where gi E { -1, 0, 1} for each i, and at least one mi is nonzero (corresponding to 
i?). Thus, w depends linearly on t with the coefficient of dependence being the 
summation above. If we assume that b 3 2, then this summation cannot be zero 
because the largest nonzero term cannot be cancelled by subsequent terms. 
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The objective function on the segment takes the form z(l) - IVY. This 
objective function actually corresponds to points in the feasible region for all 
t E (-e, l ). This is a quadratic function uot2 + ult + a2 of one variable t whose 
leading coefficient is negative (because the linear term in w(t) is nonzero). Such a 
function cannot have its minimum at t = 0. 

This concludes the proof that (%, 9, G, 2) cannot be a minimum. q 

THEOREM 1. A feasible point is a minimum for the objective function z - w2 if 
and o&y if it is a binary point. 

Proof. Let (5&f, ti, 2) be a minimum. As usual, the jij’s are the minimum 
possible. By the previous lemma, we know that ii E {O, l/2, l}. We also known 
that the objective function is equal to zero at a binary point. Accordingly, the 
only claim that we need to prove is that if some ii = l/2, then the objective 
function is positive (so the point is not optimal). 

To prove this, let Z be the set of indices such that ii = 112, and let Tdenote the 
complementary set of indices. Define 

and 

t= x b’. 
iEI 

Notice with these definitions that rG = s + t/2. 
Next we try to determine the value of 2. Note that for i, j E j, jij = ijij. For 

i, Z E Z, fij = 0. Finally, for i l 7, Z E Z, we have that fiI = iL/2 (this follows 
because jij = max(0, j?i + l/2 - 1)). Similarly, for i E Z, j E f, jij = ij/2. 

Thus, we have 

= T, + T2 + TX 
where 

Tl = x b2ii; + 2 2bi+jjij 
ief i<j 

i. jC7 

2 =s . 

Also 
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=;;Ib2i. 

Thus, 2 = s2 + of + Tj. Accordingly, 

2 - I+* = s2 + st + T3 - (s + t/2)2 

= T3 - t2i4. 
Thus, we must prove that T3 - t2/4 is positive (assuming I # fl). 

Let m be the highest numbered index in I. Then we see that T3 > b2m/2. On the 
other hand, assuming b 2 4 (so that b - 12 3b/4), we have 

Fig. 1. A plot of z versus w for feasible points. 



QUADRATIC PROGRAMMING 21 

Thus, T3 2 b2n’/2 whereas t’f4 < (419)b2m. This proves that T3 > t’f4. 
This concludes the proof that a feasible point is optimum iff it is binary. 0 

In Figure 1 we have illustrated the construction of this section. In particular, for 
the n = 4 case, we have generated 2401 testpoints x E [O, l14. From each x we 
generate (y, w, z) and plotted (w, z) for each testpoint (each pair is represented 
by a dot). The 16 binary testpoints are plotted as small circles. The curve 
z - w2 = 0 has also been plotted. This plot was generated by an implementation 
of the formulas in this section using MATLAB'~, a software package developed by 
the MathWorks, Inc. 

3. Transforming CLIQUE to QPlNE 

We now explain how to transform CLIQUE to QPlNE. Suppose we are given an 
instance of clique, that is, an integer k and an undirected graph G with n vertices 
numbered 1 to n. The CLIQUE problem is to decide whether the graph has k 
vertices all connected to one another. 

We explain how to transform this problem to QPlNE. First, write out the 
objective function and all the constraints specified in the previous section, i.e., 

(21, (3h (41, (61, (71 ad W. m e number of xi variables should be equal to n, 
the number of vertices of the graph. 

Next introduce some additional constraints. For all pairs (i, j) such that edge 
(i, j) is not present in the graph, we add the constraint xi + xj 6 1. We also add 
the constraint x1 + . . . + X~ = k. 

Now, the claim is that the graph has a clique of size k if and only if the 
optimum of the QPlNE instance is zero. First, suppose the graph has a clique C 
of size k. Then if we set X~ = 1 for each i E C, and .x~ = 0 for i @ C we get a binary 
feasible point (feasible also with respect to the constraints introduced in the 
previous paragraph). This point has an optimum value of zero as proved by 
Theorem 1. 

Conversely, suppose the optimum value of QPlNE is zero, say at point 
(2, F, 6, 2). Then Theorem 1 tells us that ii E {O, 1} for all i. Then clearly the set 
of i such that xi = 1 form a k-clique. 

4. Conclusion 

The question of how efficiently we can compute a global minimum of a nonlinear 
program appears to be very difficult. In this paper we tried to explain this 
difficulty from the point of view of complexity classes. It is proved that concave 
quadratic minimization with one negative eigenvalue is NP-hard. Since this is the 
simplest nonconvex quadratic problem, the result indicates that a major degree of 
difficulty is introduced even when one nonconvex variable appears in the objec- 
tive function. 
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An interesting open question is the complexity of computing the global 
minimum to the class of quadratic functions that can be decomposed as the 
product of two nonparallel linear functions [4]. This is a special case of the more 
general problem of minimizing a rank-2 quadratic function with one negative and 
one positive eigenvalue. This latter problem is easily seen to be NP-hard from the 
results of this paper - add the square of a new unconstrained variable to the 
objective function we constructed in Section 2. 

The present result suggests the conjecture that the problem of minimizing a 
product of linear functions is also NP-hard. 
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